Skip to content

ICT百科

通信与信息领域内的知识性网站

Menu
  • 首页
  • AI与算力
  • 光纤
  • 无线移动
    • 3G
    • 5G
    • 4G
    • xRAN
  • 6G
  • 光通信
    • WDM
    • PON
  • 交换路由
  • 半导体
  • 光器件与模块
  • 核心网
  • 原理
  • 物联网
  • 云计算
  • 通信人物
  • 设计与工程
  • 科谱
  • 通信百科文库
  • 通信企业
Menu

G.709协议:超100G OTUCn信号及其帧结构

Posted on 2021-02-072024-01-19 by ICT百科

B100G OTUCn背景

2016年,ITU-T发布了G.709 OTN标准的重大更新,覆盖了100Gbit/s,OTU4以外的速率。这种新的“beyond 100G”(B100G)接口系列正式称为“OTUCn”,定义为n×100Gbit/s模块化结构,OTUCn信号在很大程度上重用了现有的OTN。受IEEE 802.3以太网FlexE的影响,ITU-T也引入新的灵活的OTN(FlexO)接口,以配合OTUCn。

我们知道传统标准的SDH和OTN速率是以四倍为基准的,比如说STM-1到STM4,再到STM-16,又比如ODU1到ODU2再到ODU3,可能有同学会问为什么不从ODU0开始说,其实这个速率也是在后面才加入进来的。但在这里,我们想说的是另一个例外是ODU4(ODU:光数据单元)。为什么用它承载100GbE以太网客户信号,而不是通过160Gbit/s速率来承载四个40Gbit/s ODU3信号。

一个是因为以太网已经成为OTN传输中越来越重要的客户侧信号。另外,相对于160Gbit/s,112Gbit/s左右的速率对于带宽来说更具成本效益,特别是考虑到当时可用的光学元件技术。同时OTU4也可以重用以太网100GbE光接口模块。最后一个考虑因素,在当时来说OTU4有可能成为100GbE的默认长距离广域网接口,而这种考虑已成为现实。当然还有其他方面的原因,比如说调制、波特率等。因此,ITU-T也使用类似的推理方法来处理超100Gbit/s速率的相关问题。

首先要考虑的下一个Beyond 100G以太网速率是多少,现在来看应该是400GE无疑了。请参考:400G以太网收发器简介。因此ITU-T需要对400GbE传输和再利用技术的速率进行平衡优化,以及更加模块化的速率需求。最初的设想是将有限数量的IrDI(域间接口:比如说电信与联通之间互通的接口)速率标准化,这些速率主要与新的以太网速率相匹配,并定义一个模块化结构,该结构还允许构造域内接口(IaDI)信号以匹配信道特性/质量。

但是,在这个时间段,出现了一种新的灵活定义以太网物理层的模块化方法,称为“Flexible Ethernet”(简称FlexE)。它是在光网络互联论坛(OIF)实施协议(IA)中指定的。借用FlexE概念,ITU-T为OTN的B100G接口提供了一种类似的方法,称为“Flexible OTN”(简称FlexO)。在最开始的版本里面,G.709对FlexO的短距离OTN B100G的物理层PHY指定了一组n 100Gbit/s PHY,并由这些组合来承载n X 100Gbit/s OTN信号。这样每个100Gbit/s光信号就可以复用100GE/OTU4光模块。

OTUCn帧结构

在开始讲B100G帧结构之前,我们先回顾一下SDH和OTN的帧结构特点。如我们所熟悉的,SONET/SDH是通过复用映射其基本速率信号的整数倍(SONET STS-1或SDH STM-1)来达到更高速率的信号。而对于OTN帧来说,ODUk速率的帧是相同的,是通过提高发帧速率来增加的。其中传统OTN的帧结构可先参考:G.709协议(1)

对于超100Gbit/s速率,ITU-T使用了这两种方法的组合。在100Gbit/s左右建立了一个新的基本信号帧,并将该基本帧的倍数交织以产生更高速率的信号,这个基本帧称为ODUC(100gbit/s ODU slice片),然后由n×ODUC片构造ODUCn信号,其中“C”在罗马数字中表示100。如下图所示,基本信号帧ODUC帧使用与ODU4相同的帧结构。

图-基本信号ODUC帧构成的OTUC1结构

图-OTUCn帧结构

OTUCn信号的物理层将取决于其接口。这句话怎么理解呢?比如说它可以作为单个串行信号流、光域中的n 100Gbit/s信号流或n/2 200Gbit/s信号流,也可以作为具有电域接口的25Gbit/s或50Gbit/s的倍数来传输。也就是说,它不是以串行交织格式(类似于SONET/SDH的格式)定义OTUCn数据流,而是由单独的接口指定。而对于OTUC slice则以定义的方式进行交织,使得OPUCn子支时隙具有已知的顺序。

对于传输,每个OTUC被单独视为100Gbit/s实体。一种情况是,OTUC可以通过OTUCn接口的4个25Gbit/s通道或2个50Gbit/s通道来传输。在这种情况下,每个OTUC使用电层PHY通道中的特定子集,独立于其他OTUC使用的PHY通道。

另外,在“FlexO”接口中,我们可以使用100GbE/OTU4光模块将每个OTUC作为单独的100Gbit/s光信号传输,因此也不需要在PHY层中进行OTUC交织。还有一种场景是将两个OTUC组合成200Gbit/s数据流以在光通道(波长)上传输,在这种情况下,只要光发射端和接收器同意达成一致,怎么进行OTUC交织则是任意的。或者说,200Gbit/s接口可以使用组合调制来复用两个OTUC数据流(比如说每个OTUC可以采用不同线路编码在单独偏振模式在线路上传输)。

除了模块化的帧结构之外,B100G信号在另一个重要方面也不同于当前的OTN信号。为了简化网络,ODUCn信号只在网络节点之间点对点传输。也就是说节点之间如果要传输较低速率的ODUk信号,则需要在ODUk级别交叉完成。即,没有客户侧信号可以直接映射到OPUCn中,它们必须首先映射到一个ODUk(包括ODUflex),然后再映射或复用到OPUCn中。

下面我们来看看OTUCn和OTUk帧格式的一点区别。OTUCn帧没有用于FEC的专用区域,也就是说从OTUk的3825列到4008列,OTUCn是没有的。这意味着,OTUCn也只有3824列,除了OTUCn中特定开销字节不一样,其他部分与ODUCn帧一样的了,至少都是3824列。至于为什么没有FEC开销,主要是基于OTUCn需要满足不同的接口,而每种接口的FEC要求不一样。

另外,基本OTUC信号的选择需要满足以下需求:

  • OPUC1必须能够承载ODU4客户业务;
  • OPUC4必须能够承载400GE客户业务。

OTN的B100G信号速率和开销速率如下表所示:

OPUC、ODUC和OTUC帧结构下图所示:

如下所述,与OTN帧结构一样,OTUC和ODUC的开销列几乎是一致的,但是OTUC中没有用于FEC的保留区域。OTUC的开销如上图所示A和B,该字段包含帧对齐信号(FAS)和复用帧对齐信号(MFAS)。

MFAS字段是一个二进制计数器,显示某些开销使用的256帧复用帧中当前帧的相位。比如说,E区域所示的有效负载结构标识符(PSI)的开销就可以使用MFAS来确定该期间帧字节的含义。MFAS还用于消除通过不同波长或不同FlexO接口PHY在传输OTUCn信号部分之间产生的偏移。

其中的B区域如下图所示,则提供了OTUCn的通用通信信道(GCC)和段监控(SM)信息。SM开销包括路径跟踪标识符(TTI)、用于错误检测的BIP-8、向后错误指示(BEI)、向后缺陷指示(BDI)、接收对齐错误(IAE)指示和后向IAE(BIAE)指示。与OTN帧一样,TTI用于连接故障的检测,由OTUCn接收端向OTUCn源发送BEI作为先前BIP-8检测到的错误数的(二进制)计数,由接收端使用BDI通知源端它看到了信号故障。IAE表示在接入信号上检测到帧对齐错误,BIAE则通知源看到了IAE。IAE和BIAE用于在帧对齐丢失情况下禁用各自方向上的错误计数。

那么这些开销字节的作用范围又是怎样的。在这些开销中,像TTI、BDI和STAT这样的开销属于整个接口,所以它们只需要出现一次。而帧对齐则需要在所有OTUC片中重复,以加快帧恢复时间,并使其可用于多个通道接口的所有通道上的帧恢复。另外,BIP-8和BEI在所有OTUC中都是激活的,以便提供更好的(和模块化的)错误检测能力。归纳如下表所示。

ODUCn帧结构

接着说,与OTN帧结构类似,ODUCn也是由OPUCn和ODUCn开销两部分组成。下表显示了每个ODUC片的激活区域。它包含用于路径性能监视(PM)、两个通用通信信道(GCC)、一个自动保护切换和保护通信信道(APS/PCC)的开销,以及为实验目的保留的一组字节。

上面的PM开销由Trail Trace Identifier(TTI,用于连接故障检测)、BIP-8(用于错误检测)、状态信息(用于指示这是正常信号还是维护信号)和BEI组成。PM开销还包括在路径级执行往返延迟测量的延迟测量功能。对于OTUCn,BEI由ODUCn接收端发送到ODUCn源,作为先前BIP-8检测到的错误数的(二进制)计数。请注意,以前的故障类型和故障定位(FTFL)开销已从所有OTN信号中删除,字节的状态更改为“Experimental”。

OTUC和ODUC开销就先介绍到这了,关于OPUC的帧格式改期再聊。最后放一张大图来展示整个复用映射的层级关系。

Category: WDM, 原理

发表回复

要发表评论,您必须先登录。

🚀 有问题就有答案,点击提问 →

博主
李东霏
【香农信息技术研究院】

标签

4G 5G 5G NR 5G前传 5G承载 6G 50G PON 400G 800G DWDM F5G FDD FlexE G.654E G.709 GPON ISI LTE MIMO MPLS ODN Open RAN OSNR OTN PON ROADM Segment Routing SPN SRv6 TDD WDM 光与技术 光模块 光纤 区块链 华为 参考信号 同步 天线增益 数据中心 波长 相干技术 空芯光纤 诺基亚 路由器
您尚未收到任何评论。

友情链接:通往ICT之路文库,大功率电源培训,

© 2025 ICT百科 | 蜀ICP备2020035321号-1
微信支付
请使用 微信 扫码支付